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This paper deals with the static response of the axisymmetric problem of arbitrarily laminated, anisotropic
cylindrical shells of finite length using three-dimensional elasticity equations. The closed cylinder is simply
supported at both ends. The highly coupled partial differential equations (PDEs) are reduced to ordinary
differential equations (ODEs) with variable coefficients by choosing the solution composed of trigonometric
functions along the axial direction. Through dividing each layer into thin laminas, the variable coefficients in
ODEs become constants, and the resulting equations can be solved exactly. Numerical examples are presented
for [—45/0 deg] and [ —45/45/ — 45 deg] laminations under sinusoidal normal loading on the outer surface and
uniform internal pressure. From the present study, it is found that, although the general behavior is similar to
that of isotropic shells, the coupling is obvious in general, and the shear effect is very important in the edge
region. Moreover, the initial curvature effect plays an essential role, especially in stress distributions.

Introduction

TATIC and dynamic responses of composite laminated

closed cylindrical shells and curved panels have received
wide attention in recent years. Because of the anisotropy in
composites and the presence of curvature in shell structures,
obtaining exact three-dimensional elasticity solutions for lami-
nated closed cylinders and open panels subjected to general
loading and arbitrary boundary conditions becomes a chal-
lenging task. The mathematical complexity in analyzing three-
dimensional elasticity equations usually makes exact solutions
difficult to obtain. However, certain problems in which a
three-dimensional approach can be used still exist.

Most of these problems can be solved by assuming the
solution to be composed of trigonometric functions in the
axial and circumferential directions. The main reason is that
the partial differential equations (PDEs) governing three-di-
mensional problems can be reduced to one-dimensional ordi-
nary differential equations (ODEs) with variable coefficients.
The solution for the resulting ODEs can be obtained by intro-
ducing the displacement potential function. Usually, this
method is used with isotropic and transversely isotropic mate-
rials, whereas the Frobenius method is used with orthotropic
materials. When the three-dimensional elasticity solutions are
available, they are very useful in evaluating the accuracy of
approximate results, e.g., in the case of two-dimensional shell
theories. ;

For the static problem, Flugge and Kelkar! and Yao? ob-
tained an exact solution for closed isotropic long cylinders
under general two-dimensional surface traction. Using the
Frobenius method, Srinivas® developed an exact three-dimen-
sional solution for orthotropic finite cylinders with simply
supported conditions. However, the numerical results are
given for free vibration only. Varadan and Bhaskar* also
performed the static stress analysis using the procedures pro-
posed by Srinivas. Pagano® obtained the stress field for a
homogeneous, anisotropic closed cylinder under two-dimen-
sional surface loads in which the problems are independent of
the axial coordinate. However, numerical results are reported
only for a single orthotropic layer. Recently, Ren®” presented
an exact solution for simply supported laminated cross-ply
circular cylindrical panels of infinite and finite length in the
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axial direction. Mikhailov8 presented a general solution of the
axisymmetrical torsional equation for infinitely long, elastic
cylindrically anisotropic shells. The stresses and deformations
in cross-ply composite cylinders due to a circumferential tem-
perature gradient in which the problem is independent of the
axial coordinate have been analyzed by Hyer and Cooper.® An
extension was made by Kollar et al.!° for the generally an-
isotropic composite cylinders subjected to hygrothermal and
mechanical loads. More recently, Huang and Tauchert!!-1?
investigated the elastic response of cross-ply cylindrical panels
and double-curved shell panels subjected to mechanical load-
ing and temperature variation using a power series method.

Although the aforementioned three-dimensional elasticity
approach provides exact solutions, considerable mathematical
complexity prevents more general problems from being
solved. As a consequence, an approximate elasticity approach
under the assumption of 4;,/R; <1 (where h; and R, denote
the thickness and mean radius of the kth lamina) was sug-
gested by Soong!® and widely used in the static and free
vibration analysis of fiber-reinforced composite-laminated
closed cylindrical shells and panels.!4!® The advantage of this
assumption is that the ODEs with variable coefficients can be
reduced to simple ODEs with constant coefficients that can be
solved exactly. Accurate results can be achieved when the
number of fictitious layers becomes sufficiently large.

Based on the aforementioned approximate elasticity ap-
proach, the static response of simply supported cross-ply lam-
inated cylindrical panels was analyzed by Bhimaraddi and
Chandrashekhara.'* An analytical solution of the axisymmet-
ric problem for interlaminar stresses in cross-ply laminated
closed cylinders under thermal and mechanical loads was pro-
vided by Wang and Li.!® Soldatos and Hadjigeorgiou!¢ studied
the free vibration problem for homogeneous, isotropic closed
cylinders and open panels of finite length with simply sup-
ported boundary conditions. Extensive work was done by
Soldatos'” on the torsional vibrations of orthotropic closed
cylinders. A very good comparison between approximate re-
sults and exact elasticity solutions was observed. A solution
for the axisymmetric vibration problems of cross-ply lami-
nated closed cylinders was also obtained by Hawkes and
Soldatos.'® Additionally, Bhimaraddi'® derived the solution
for the free vibration problem of homogeneous cross-ply lam-
inated doubly curved shallow shells of rectangular planform.

A brief survey of the literature shows that elasticity solu-
tions to the problem of arbitrarily laminated, anisotropic
closed cylinders of finite length have not yet been investigated.
Although the solutions from classical shell theory and first-or-
der shear deformation theory are available,?*2! in this paper a
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solution based on an elasticity equation is presented for the
static axisymmetric problem of arbitrarily laminated, an-
isotropic closed cylindrical shells of finite length with simply
supported boundary conditions. The solution is essentially
based on the approach proposed by Soong and used by some
others as described in the previous paragraph. A general solu-
tion of displacements and stresses is obtained. A convergence
study is established for a single anisotropic layer [45 deg]
under sinusoidal normal loading with two mean-radius-to-
thickness ratios, in which the number of fictitious layers
ranges from 1 to 20. In the first example, two types of stacking
sequence, [ —45/0 deg] and [ — 45/45/ — 45 deg], are used.
The radial displacement and some of the stresses are listed and
compared with classical shell theory. The second example
illustrates the behavior of thick shells under uniform internal
pressure. Finally, comments are made on general behavior and
boundary layer.

Problem Description

. Consider a laminated composite closed cylinder made of N
perfectly bonded homogeneous anisotropic layers whose prin-
cipal axes coincide with three orthogonal coordinates r, #, and
x, as shown in Fig. 1. The r, 6, and x represent the radial,
circumferential, and axial coordinates. Each layer of the com-
posite has one plane of elastic symmetry perpendicular to the
thickness direction (i.e., monoclinic material). The thickness
and mean radius of the £th lamina are denoted by A, and R;;
R;, R, and R, are the inner, mean, and outer radii; and 4 and
L stand for the total thickness and length of the cylinder.
Having one plane of elastic symmetry, the constitutive equa-
tion of each layer in which 13 elastic constants are involved is
stated as.follows:
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Since the present study focuses on the axisymmetric prob-
lem, the equilibrium equations become
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Fig. 1 Coordinates system and geometry of cylindrical shells.

where u,, up, and u, denote the displacements in the radial,
circumferential, and axial directions, respectively, with p de-
noting the mass density.

The strain-displacement relations of the cylindrical coordi-
nate system are expressed as follows:
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Substituting Eqs. (1) and (3) into Eq. (2), the goVerning equa-
tions in terms of displacements for each layer become
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It should be noted that the three PDEs are coupled together
for arbitrarily laminated anisotropic cylinders, whereas the
equation governing the circumferential displacement iy is un-
coupled from the other two for cross-ply laminates. Moreover,
the governing equations, Egs. (4), are differential equations
with variable coefficients and are not easily solved using a
power series method. Therefore, an approximation is made for
simplifying these governing equations. Introducing the radial
local coordinate £, located at the center of the kth artificial
layer, and making the approximation £,/R; <1, in which
each layer is viewed as a thin coaxial cylinder, the following
equations are assumed'>-18:
! (1 =)
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where

Er=r —Ry; Mg = Er/Ry

and & ranges from 1 to M, where M represents the total number
of fictitious sublayers. Upon inserting Eq. (5) into Egs. (4) and
retaining the zeroth-order term, one obtains
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The resulting governing equations (6) become a set of differen-
tial equations with constant coefficients for which the solution
is easier to obtain.

Solution of Governing Equation

For the static problem, the Navier-Stokes series solution for
each layer takes the form

8
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where p,, = m«/L. The choice of this displacement field will
automatically satisfy the following simply supported boundary
condition at two ends of the cylinder, i.e.,

U =0, =Ty=0 at x=0,L ®)
Using Egs. (6) and (7) yields
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where d denotes a derivative.
Equations (92-9¢) are three coupled ODEs with constant
coefficients. The homogeneous solution may be obtained by

assuming AX, A¥, and A¥ in the form of eMn™ (n = 1~6),
and the corresponding characteristic equation is
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where a;(i = 0 ~ 6) are listed in Eq. (Al). When the six distinct
real roots are obtained, general solutions of displacements and
stresses can be given as follows:
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where the constants ¢%, and Q% are expressed in Eq. (A2). If
complex roots exist, the solution is expressed in Eq. (A3).
Equations (A1-A3) are listed in the Appendix. It should be
noted that Eqs. (11) contain 6 M undetermined coefficients for
any fixed m value. These constants can be obtained by using
the traction conditions on the inner and outer surfaces, usually
expanded into Fourier series, and the continuity conditions of
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displacements and transverse stresses at the interfaces (both
real and fictitious), which are stated as follows:
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After solving the 6M unknown constants, and substituting
them into Eqs. (11), the resulting displacements and stresses

can be obtained.

Numerical Results and Discussion
A numerical convergence study is necessary because of the
approximate nature of the procedures. The problem considered
here is for a single anisotropic layer [45 deg] subjected to
sinusoidal normal loading on the outer surface g, = pgsin{(mx/

Table 1 Convergence study for 45-deg layer with .S =20

ur ax g Txg Tro Txr

M (L/2,R) (L/2,Ry) (L/2,Ry) (L/2,Ry) (L, R) (L, R)

1 7.6356 —6.7511 13.2727 6.9453  —0.01358 —0.00600

2 7.6162 —6.7489 13.2230 6.9375 —0.01410 —0.01355

5 7.6109 —6.7483 13.2091 6.9381 —0.01407 —0.01324
10 7.6101 —6.7482 13.2071 6.9382 —0.01409 —-0.01354
15 7.6100 —6.7482 13.2067 6.9382 —0.01409 -0.01351
20 7.6099 —6.7482 13.2066 6.9382 —0.01409 —0.01354

Table 2 Convergence study for 45-deg layer with S =5

Txr
(L, R)
—0.04420 —0.01757

iy Ox 0p Txb Tro
M (L/2,R) (L/2,Ro) (L/2,Ro) (L/2,Ry) (L, R)
1 7.7507 —5.5944 —0.4584 5.5408
2

7.4495 —5.3541 -0.3785 53102 —0.03197 —0.02610

5 7.4083 —5.2897 —0.3573 5.2477 —0.04653 —0.04384
10 7.3979 —5.2805 —0.3543 5.2388° —0.04667 —0.04493
15 7.3960 —-5.2789 —0.3537 5.2372 —0.04663 —0.04478
20 7.3953 —5.2783 --0.3535 5.2366 —0.04664 —0.04490

L). Material properties and nondimensionalized deformations
and stresses are considered as follows:

EL/ET = 40; GLT/ET = 05; GTT/ET =0.2
R L
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Two mean-radius-to-thickness ratios S are used, and the corre-
sponding solutions are listed in Tables 1 and 2, respectively.
The number of fictitious layers M ranges from 1 to 20. The
radial displacement and five stresses listed in these tables
suggest that the convergence is very fast even for a thick
cylinder. Therefore, the ratio A;/R; < 1/100 is used in the
following numerical analysis: for two-layer laminates, A, /R,
is 1/100; for three-layer laminates, 1/105. )

The results of deformations and stresses of a two-layer
unsymmetric laminate [ —45/0 deg] and a symmetric angle-ply
laminate [—45/45/ —45 deg] closed cylinder under sinusoidal
normal loading are listed in Tables 3 and 4, respectively,
together with results from classical shell theory (CST). The
negative sign of the fiber angle denotes counterclockwise di-
rection with respect to the positive direction of the generator
(x axis). The layers are of equal thickness. In these tables, the
ratio S ranges from 5 to 500. It may be seen that for higher
ratios of S the present approximate elasticity solution ap-
proaches the CST result.

In the second example, the same laminates [ — 45/0 deg] and
[—45/45/ —45 deg], subjected to a uniform internal pressure,
are analyzed with the same material properties and boundary
condition. The S used here is only 5. Figure 2 gives the radial
deflections at r = R along the cylinder axis from the present
and CST solutions for both stacking sequences. It should be
noted that the initial pressure is applied on the inner surface
instead of the middle surface, as in CST. In the central region,
the deflections are all very uniform. Some variations can be
seen in the edge region, just as in the case of isotropic shells.
Figures 3-S5 show the axial variation of in-plane stresses of the
outer and inner surfaces for the [—45/0 deg] lamination.
From these figures, it is found that the stresses o,, o¢, and 7,
at the inner surface in the central region are very close for both
theories. The stresses oy and 7,5 are almost identical in the
present and CST solution for the edge region; this is not the
case with stress o,. Furthermore, the CST results on the
stresses oy, 03, and 7,5 at the outer surface of the outer layer
have the same tendency in the CST as in the present solution,
but the values disagree considerably.

Axial variations of in-plane stresses for the [—45/45/—45
deg] lamination are shown in Figs. 6-8. These figures show the
stresses at the outer surface of the outer layer and the inner

Table 3 Comparisons of displacement and stresses between present and CST solution for [45/0 deg)
lamination under sinusoidal normal loading of the outer surface

R/h Theory  @(L/2, R} x(L/2, Ro) &6(L/2, Ro) 7xelL/2, Ro) #re(L, R}  #x(L, R)

5 Present 7.5471 ~0.2043 32292 —2.2507 —0.02042 —0.05179
CST 7.1654 ~0.0768 3.5840  —~1.7734 - _

10 Present 7.2755 2.5192 9.5131  —1.0300 —0.02238  —0.04932
CST 7.0587 2.8217 10.055 ~0.3753 — _—

20 Present 7.1016 8.4264 22.526 1.9028  —0.02331  —0.04831
CST 6.9868 8.8086 23.150 2.6390 - —

50 Present 6.9849 26.482 61.875 11.062 —0.02384  —0.04778
CST 6.9372 26.901 62.537 11.837 — —

100 Present 6.9436 56.658 127.530 26.420 —0.02401  —0.04761
CST 6.9196 57.097 128.212 27.215 — —

500 Present 6.9100 298.270 652.960 149.509 —0.02414  —0.04748
CST 6.9052 298.724 653.657 150.319 — —
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Table 4 Comparisons of displacement and stresses between present and CST solution for

[—45/45/ — 45 deg] lamination under sinusoidal normal loading of the outer surface

R/h Theory  @,(L/2, R) &c«(L/2, Ro) &s(L/2, Ro) 7xo(L/2, Ro) 7r(L, R)  Tuw(L, R)
5 Present 5.6624 —2.4456 27546 ~0.4057  0.01327 0.01738
CST 5.2674 —0.6488 4.3447 1.6383 — _—
10 Present 5.4903 —3.3360 6.8694 1.0235 0.00720 0.00946
CST 5.2675 —-1.2117 8.7819 3.3755 — —_—
20 Present 5.3861 — 4.6095 15.602 4.3612  0.00370 0.00486
CST 5.2675 —2.3313 17.662 6.8564 — —
50 Present 5.3168 —8.0515 42.165 14.728 0.00173 0.00173
CST 5.2675 —5.6859 44.308 17.304 — —
100 Present 5.2924 —~13.670 86.548 32.115 0.00087 0.00087
CST 5.2675 —11.276 88.718 34.717 — —
500 Present 5.2725 —58.408 441.810 171.402 0.00017 0.00017
CST 5.2675 —55.992 444.001 174.025 — —
80 r 60 - o Outer layer : outer surface
o Inner layer : inner surface
70 o 30 b
08
6.0 0.0 .
50 F _ap0 X/L
i, o
40 F o
------ Present E —6.0
30 - —— CST ~9.0 -
20 - o[—-45°/45°/—45°] _120 L
o [-45°/0° ]
10 - ~15.0 F
0.8 0.9 § o H P Present
0.0 : : —18.0 L — CsT

X/L

Fig. 2 Axial variation of radial deflection for the [ —45/0 deg] and
[—45/45/ — 45 deg] laminations.

surface of the inner layer. The CST solution shows consider-
able disagreement when compared with the present solution.
This tendency exists not only in the edge region but also in the
central region. It has been suggested?! that the reason for the
difference is the change in shear angle from layer to layer and
the insensitivity of the CST to this change. The results of the
present study suggest that the change of shear angle may not
be the reason, the transverse shear stress in the central region
being almost zero, as can be seen from Fig. 9. Actually, the
initial curvature effect, combined with the material properties,
accounts for the difference. In this analysis the initial curva-
ture effect means using a different radius of curvature for each
different fictitious layer instead of a single radius of curvature
for the whole shell as in CST. Hence, as the laminate becomes
thicker, the difference between the radii of curvature of the
inner and outer surfaces increases. In another sense, this effect
can be explained in terms of thickness. In calculating o,, and
also oy and 7,4, the hoop strain ¢, is involved as well as the
radius of curvature. The radius of curvature is smaller on the
inner surface than the mean radius, and larger on the outer
surface. The difference is not negligible, being almost 20% in
the case studied here. Furthermore, as shown by the constitu-
tive equation under this stacking sequence, the corresponding
material constant, e.g., C,, for o, is comparable to the major
constant, e.g., Cj;; the influence of ¢ on o,, 0y, and 7, is then
obvious. Consequently, the results from CST on both surfaces

Fig. 3 Axial variation of longitudinal stresses on the outer and inner
surfaces for the [ —45/0 deg| lamination.

are very close, falling between the results for the outer and
inner surfaces in the present approach, as can be seen in Figs.
6-8. The two curves are separated by the initial curvature
effect; that is, the one on the outer surface is lowered by its
larger curvature, whereas the one on the inner surface is raised
by its smaller curvature. The influence of the initial curvature
effect can also be observed from the results of stresses at
interfaces (not shown).

It should be noted that, in Fig. 6, results from finite element
analysis are also given for comparison. Although the solution
of the present approximation does converge, as can be seen
from the convergence study, it is not necessary to be exact.
To doublecheck the accuracy of the present analysis, the re-
sults from a three-dimensional, layerwise finite element analy-
sis?? are shown in Fig. 6. In this figure, it is found that the
agreement between the present analysis and finite element is
acceptable.

As for the transverse shear stress 7,,, Fig. 9 shows the
variations at the outer interface, the middle surface, and the
inner interface along the axial direction. It can be observed
that 7,, is zero in the central region, reaching higher values at
the edge; the middle surfaces show maximum transverse shear
stress at the endpoints. The axial variations of in-plane dis-
placements u, and u,, as shown in Fig. 10, give a clear view of
how the shell deforms. In the central region, the strains are
quite uniform. For axial displacement u,, the difference be-
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Fig. 4 Axial variation of circumferential stresses on the outer and
inner surfaces for the [—45/0 deg} lamination.

40 r © Outer layer :outer surface
3.0 - o Inner layer : inner surface
20
10
o 0.8
a
=3 00 L
FH
X/L
..10 =
-2.0
=30 - - Present
~40 L — CST

Fig. 5 Axial variation of in-plane shear stresses on the outer and
inner surfaces for the [ —45/0 deg] lamination.

tween the outer and inner surfaces is not very pronounced
even in the edge region. On the other hand, the through-the-
thickness variation of the u, in the central region is noticeable,
clearly showing the effect of coupling.

In all of the figures, the boundary-layer phenomenon is
obvious. In the literature surveyed, the boundary-layer size is
characterized by the following two methods. In the first
method, a criterion proposed by Vinson and Chou® for a
single anisotropic layer is used for generally laminated, an-
isotropic closed cylinders, under the restricted conditions of
long shell behavior. Only the one-sided (right-hand side)
boundary layer is discussed because of symmetry. This region
is located at e ~#Z —~ %) = 0,006 (see Ref. 23; for 3, see Ref. 20).
After calculation, the region locates at 0.8728 < x,/L <1.0
for [—45/0 deg] and 0.8653 < x,/L < 1.0 for [—45/45/ —45
deg]. It should be noted that this criterion is based on CST and

cannot be used in thick shells; these values are for reference
only. In the second method, Pagano and Whitney? proposed
a conservative estimate for the size of the boundary-layer
region, i.e., (L —2R)/L < x;/L = 1.0. Applied to this prob-
lemitis 0.9 < x/L =< 1.0. Because there is no such criterion as
the one proposed by Vinson and Chou?? within the framework
of elasticity theory, a criterion based on an engineering judg-
ment of the variation of deflection starting above 5%, com-
pared with the maximum deflection, is proposed here, i.e.,
U, —~

U,
—— =0.05 a4
U, —u

(o

In the previous formula, #, _ and u,, denote maximum and
central radial displacements along the generator, whereas u,,
is the deflection corresponding to the starting point of the
boundary layer. According to this criterion, the boundary-
layer region calculated from the present results is 0.8620=<

8.0 - o Outer layer : outer surface

o Inner layer : inner surface
6.0 |
40 -
2.0 —
£ 0.8
£ L
s}
-2.0
-4.0
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-60 - —— CST
—- FEM
-8.0 L

Fig. 6 Axial variation of longitudinal stresses on the outer and inner
surfaces for the [ —45/45/ — 45 deg] lamination.
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Fig. 7 Axial variation of circumferential stresses on the outer and
inner surfaces for the [ — 45/45/ — 45 deg} lamination.
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Fig. 8 Axial variation of in-plane shear stresses on the outer and
inner surfaces for the [ —45/45/ — 45 deg] lamination.
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Fig. 9 Acxial variation of transverse shear stresses 7,, on the upper
interface, middle surface, and lower interface for the [ —45/45/—45
deg] lamination.
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Fig. 10 Acxial variation of longitudinal and circumferential displace-
ments on the outer surface, middle surface, and inner surface for the
[—45/45/ — 45 deg] lamination.

xp/L =1.0 for [—45/0 deg] and 0.8800 < x,/L <1.0 for
[-45/45/—45 deg]. No matter which theory or criterion is
used, the region proposed by Pagano and Whitney? seems to
be not conservative enough for the problem considered here,
suggesting that a more conservative value (L —3R)/L <x;/
L =<1.0,i.e.,0.85<x,/L <1.0 may be appropriate. However,
before drawing a conclusion, intensive study of the boundary
layer of arbitrarily laminated, anisotropic thick closed cylin-
ders is needed. Such a solution would be a function of lamina-
tion, geometry, anisotropy, loading, and end conditions.

Conclusions

An approximate elasticity solution for arbitrarily lami-
nated, anisotropic cylindrical closed shells of finite length with
simply supported end conditions is presented in this paper.
The highly coupled PDEs can be reduced to ODEs of variable
coefficients by choosing a solution composed of trigonometric
functions along the axial direction. This can be further re-
duced to ODEs with constant coefficients. From the prelimi-
nary results shown in this study, it is found that the general
behavior of laminated shells is similar to that of isotropic
shells, uniform deflection in the central region, and a clear
boundary layer. Although the deflection is uniform in the
central position, the in-plane stresses are not constant through
the thickness as in the case of isotropic shells. The coupling
effects, such as bending stretching and stretching twisting, are
thought to be responsible. The transverse shear stresses are
zero in the central region but not negligible at the edge for the
case studied here. The initial curvature effect is very important
in making accurate predictions of stresses even in the central
region. Consequently, this study shows that if a good two-di-
mensional shell theory is to be established, with satisfactory
accuracy for both deformations and stresses, shear effect and
initial curvature effect must be included. As for boundary
layer, a conservative value (L — 3R)/L <=x,/L < 1.0 would
seem to be appropriate for the influence region.

Appendix
The constants @;(i = 0 ~ 6) in Eq. (10) are
as = by — by; as = 3ag
a, = 2b; — CX (b3 + CEby) — by — 2Ckbg + Cibig — 2by
+ 2By3 + babay + Chibog
ay = —b; — 2C§, (bs + CKby) — 2bs — C{(2bg + by + big)
+ 2C%b1s + 4bys + 2b2bys + 2Cbis
@y = — by + by(bs — 2bys) — by + be(bs + C&iby) Al
— Ci(2bg + byo + bis) + 2Cfby1 + CK(bis + bro) (4D
= Cfibx + 2by; — bys + Clybyg — Cibso
a1 = (C§ + be)(bs + Cisby) + by(bs — 2bss5) — 2Cjsbyo
+ Clg(b1a + bie) + Cisbio — Cfibag — bag
+ Cly(bys — bag) — Csbso
a0 = ba(by — bs — b7) + Cy(by3 + b17) — Cliby
— Claby — Clsbs,
where
b= CiiCiiCls; by = puRiC + Cly; by = prRECYCHy

by =Pr2nR/%C§3csksCéC6§ bs = pﬁRﬁcﬁc&; bg = p,f,R,fCGkG
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= prRICHCE;

by = prRE(CY— Cks—

bg = pLR(Cls + CHI(C + CF)
CENCE; + CL) + (Cis + CHI(Cl + CH)

bio = paRi(Cls — C& — CR(ChL + CX); by = piREbs

by = pLRbo; bis = pARbio

b = prREIRCH + CCH + Cf) + (Cls ~ CH(CH + Ci))

bis = pRRHCl; — CHQCE + Ch); bis=pLRibu

by = PanRl%bls;
bio = paR;(Cis — Cfs —

big = prRE(Cx + Cis)?

Ci)QCHs + CL); by = pAR7bys
2
by = pran%bw; by = C3"3Cf5

2
by = pLRICKCHCls; by =Cls; bys = pARECKCls

2 2
by = P;;Rlﬁclks C§3§ by = anR;:Clks

by = pERI(C + CKY?; by =piRE(CK -

CHNCY, + CE)
by = przrrRl%bZS;

The constants ¢,

by = P;Rﬁbw
» and Q% in Eq. (11) are given as

1
B = 3t = PaREIN (C + CH) + Cls - Cf)
1

x [NEL(CE + CE) + 2CK + CK]
— [CENS, (N, + 1) — (PARECE + CH)]

X [CfS)\Ir{rm O\Ircrm + 2) - pranI%CIkd }
(A2)
1
Qo = CHEN N + D) = (pRRECE + CH)
1
X [CENE, (N8, + 1) — (PERECE + CH)I
+ PaRE [N (Cl + Cis) + Cis — Cfs — Cd]
X [N, (Cls + Cks) + 2Cks + Ciil}
where
Ay = pR; | D\lr(nn (Clk3 + C5k5) + Clk3 - C1k2]
X [Cz&)\fnn ()\fnn + 1) (me13C66 + C44)]
— N5 (Cls + Ci5) + Ci5 — Ciis — C34l
X [CiNow N + 2) — PRRECH])
For the complex roots obtained in Eq. (10), the solution of
displacements and stresses are to be modified. In the follow-
ing, two complex conjugated roots, p,,; % ig,,, are assumed.

For the sake of convenience, only displacement formulas are
given as

uf =Y {e Pmi[A % 1cos(@mini) + A KaSin(@mini)]
m=1
S k
+ Y et "kA,’fm} sin( p,nx)
n=3

= E {ep'"l[fmlcos(Qmmk) +fm3Sin(qm1nk)]Arlr(tl
m=1

+ € Pm[ £,2¢08(qm1Mi) + SrnaSin(@mini))A ks
(A3)

&
g "kA,ﬁn} cos(pmX)

uf = E {eﬂml[fmscos(qmmk) + frrsin(@mnl A%,
+ e P £,6c08(gmiMi) + SrugSIN(@rmm 1AL,

6
+ X Qﬁne*'k"""kA,’Zn} cos(pmX)

n=3
where
Lfnis 2] = {[hl, hal(g585 — 8688} + [A3, ha]
X (8385 — 8289) + s, hel(g286 — 2385) )
Unie Sk = - LUt Pty = 2229) + U,
X (8189 — 8387) + hs, hel(8384 — £186) }
[fmss fnsl = —— L s o) + [fms, Jimal

e d, —d
+—ﬂ[fm7’fm8]+ |:_1’ 2:|
é3 (2]

€3
_1
[frs Fusl = A

{[71, P2)(gags — 8587) + M35 ha]

X (8287 — £188) + [hs, hel(8185 — £284))
wherein
Ay = 818589 + 828687 + 838488 — £28485 — 818683 — 838587
gi=ees—ees; S=—(eestee); g=—(eF+e))

84 = €167 — €3€5; g5 = €38 — €207, 8¢ = €363 — €4€y

gr=e1ey — e3eg; gy = —(exeg t+ €385); o= —(e4es + €3¢7)

hy=eqdy —esdy; ho= —(esdr + e3d,); h3 = e:d, + eyds

hy= —(e:d, + e3dy); hs=esd) + esd,

he = exdy — esdy; € = PuRigm(Cls + C)

2 = PR [(Cls — Cls — C}) + pu(Cls + CY

ey = PmRigm(Cl + CK)

3= PuRi[Cl; — Ch + pmi(Cly + CHY; €5 = CiiGmi(pm + 1)

e = Ci(Pay — G2y + Pm1) — (Ch + pAREICE)

7 =2Cqm{Pm + 1); eg= Cfs(ﬁél — gy + 2Dm) _pr%rRI?CIkG

dl = C3k3le(2pml + 1)

dy = C&(p2) — @iy + Dm) — (DERECK + CF)

ds = ppuRigmi(Cs + CK)
dy= PmRk[ZCfs + Czke + pml(c3k6 + Cfs)]
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